

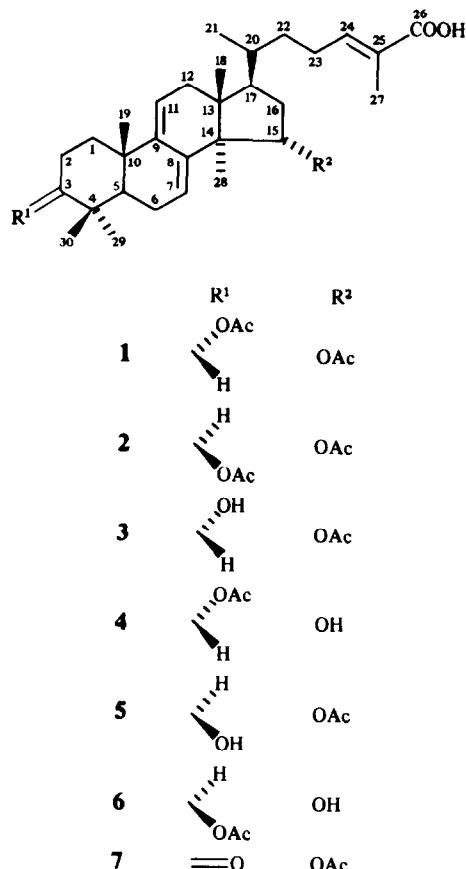
## TRITERPENES FROM *GANODERMA LUCIDUM*

LEE-JUAN LIN, MING-SHI SHIAO and SHEAU-FARN YEH\*

Department of Medical Research, Veterans General Hospital, Taipei, Taiwan 11217, Republic of China; \*Department of Biochemistry, National Yang Ming Medical College, Taipei, Taiwan 11217, Republic of China

(Revised received 27 November 1987)

**Key Word Index**—*Ganoderma lucidum*; Polyporaceae; lanostane triterpenes.


**Abstract**—Three new lanostanoid triterpenes, isolated from the mycelia of the fungus *Ganoderma lucidum*, were determined to be  $3\beta$ -hydroxy- $15\alpha$ -acetoxy-lanosta-7,9(11),24-trien-26-oic acid,  $3\beta$ -acetoxy- $15\alpha$ -hydroxy-lanosta-7,9(11),24-trien-26-oic acid and 3-oxo- $15\alpha$ -acetoxy-lanosta-7,9(11),24-trien-26-oic acid by spectroscopic and chemical methods.

### INTRODUCTION

*Ganoderma lucidum* (Fr.) Karst, a Polyporaceae species used in traditional Chinese medicine, has attracted great attention recently because of its production of many biologically active oxygenated triterpenes [1-4]. As a continuation of our study on their hypocholesterolemic activities and the previous identification of  $3\alpha,15\alpha$ -diacetoxy-lanosta-7,9(11),24-trien-26-oic acid (ganodermic acid R) (1) and  $3\beta,15\alpha$ -diacetoxy-lanosta-7,9(11),24-trien-26-oic acid (ganodermic acid S) (2) [5], five more lanostanoid acids 3-7 were isolated. Among them, only 3 (ganoderic acid X) and 4 (ganoderic acid Mf) were previously reported [1, 6]. New compounds 5, 6, and 7 were tentatively named as ganodermic acids T-N, T-O and T-Q, respectively.

### RESULTS AND DISCUSSION

The UV spectra (in MeOH) of compounds 3-7 showed almost identical absorption bands at 235, 243, and 252 nm, indicating the presence of a common heteronuclear conjugated diene skeleton. Identical molecular ion peaks at *m/z* 512 ( $C_{32}H_{48}O_5$ ) (EIMS, 12 eV) and two common fragment ions at 494 [ $M - H_2O$ ]<sup>+</sup> and 452 [ $M - MeCO_2H$ ]<sup>+</sup> observed in compounds 3-6 suggested that they were stereo- or positional isomers and each compound possessed one hydroxy and one acetoxy substituents in the molecule. Furthermore, two fragment ions at *m/z* 311 [ $M - MeCO_2H - C_8H_{13}O_2$  side chain]<sup>+</sup> and 257 (D-ring cleavage - Me) in 3 and 5, which were not observed in 4 and 6, indicated that 3 and 5 bear the acetoxy group at D-ring. The <sup>1</sup>H NMR spectra of 3-6 each showed a chemical shift at  $\delta$  2.02-2.06 (*s*, 3H) (Table 1) confirming the presence of an acetoxy group. Comparison of the identical proton signals at  $\delta$  5.04 (*dd*) in 3 and 5 with those of ganodermic acids R (1), S (2) and related triterpenoid metabolites [3, 7, 8] indicated that the acetoxy moieties were most likely attached to C-15 with the  $\alpha$ -configuration. Compound 3 has a proton signal at  $\delta$  3.43 (*br s*) and compound 5 a signal at 3.23 (*dd*) which supported the location of their hydroxy groups at C-3, with the  $\alpha$ -configuration in 3 and the  $\beta$ -configuration in



5. Acetylation of 3 and 4 afforded 1 finally confirming 3 as the reported  $3\alpha$ -hydroxy- $15\alpha$ -acetoxy-lanosta-7,9(11),24-trien-26-oic acid (ganoderic acid X) (mp 104-105°) [1] and 4 as its positional isomer. Compound 4 is therefore assigned the structure  $3\alpha$ -acetoxy- $15\alpha$ -hydroxy-lanosta-7,9(11),24-trien-26-oic acid (ganoderic acid Mf) [6].

Table 1. Partial  $^1\text{H}$  NMR spectral data of compounds 3-7 (400 MHz,  $\text{CDCl}_3$ )\*

| C     | 3                            | 4                            | 5                             | 6                             | 7                                    |
|-------|------------------------------|------------------------------|-------------------------------|-------------------------------|--------------------------------------|
| H-1   | †                            | †                            | †                             | †                             | 2.75 <i>ddd</i><br>(5.7, 14.6, 14.6) |
| H-3   | 3.43 <i>s</i>                | 4.65 <i>s</i>                | 3.23 <i>dd</i><br>(5.1, 10.2) | 4.48 <i>dd</i><br>(5.2, 10.0) | —                                    |
| H-7   | 5.46 <i>m</i>                | 5.83 <i>m</i>                | 5.47 <i>m</i>                 | 5.83 <i>m</i>                 | 5.51 <i>m</i>                        |
| H-11  | 5.32 <i>d</i><br>(5.9)       | 5.30 <i>d</i><br>(5.3)       | 5.29 <i>d</i><br>(4.5)        | 5.28 <i>d</i><br>(4.7)        | 5.37 <i>d</i><br>(5.6)               |
| H-15  | 5.04 <i>dd</i><br>(4.9, 9.2) | 4.27 <i>dd</i><br>(5.2, 9.4) | 5.04 <i>dd</i><br>(4.7, 9.4)  | 4.25 <i>dd</i><br>(5.1, 9.0)  | 5.06 <i>dd</i><br>(4.6, 9.4)         |
| 3H-18 | 0.64 <i>s</i>                | 0.60 <i>s</i>                | 0.63 <i>s</i>                 | 0.58 <i>s</i>                 | 0.66 <i>s</i>                        |
| 3H-19 | 0.96 <i>s</i> ‡              | 0.96 <i>s</i> ‡              | 0.98 <i>s</i> ‡               | 0.97 <i>s</i> ‡               | 1.09 <i>s</i> ‡                      |
| 3H-21 | 0.90 <i>d</i><br>(6.2)       | 0.89 <i>d</i><br>(6.2)       | 0.89 <i>d</i><br>(6.2)        | —                             | 0.90 <i>d</i><br>(6.3)               |
| H-24  | 6.84 <i>t</i><br>(7.0)       | 6.86 <i>t</i><br>(6.8)       | 6.83 <i>t</i><br>(7.1)        | 6.85 <i>t</i><br>(7.0)        | 6.82 <i>t</i><br>(6.9)               |
| 3H-27 | 1.81 <i>s</i>                | 1.82 <i>s</i>                | 1.80 <i>s</i>                 | 1.80 <i>s</i>                 | 1.81 <i>s</i>                        |
| 3H-28 | 0.99 <i>s</i> ‡              | 0.98 <i>s</i> ‡              | 0.98 <i>s</i> ‡               | 0.90 <i>s</i> ‡               | 0.98 <i>s</i> ‡                      |
| 3H-29 | 0.91 <i>s</i> ‡              | 0.85 <i>s</i> ‡              | 0.85 <i>s</i> ‡               | 0.86 <i>s</i> ‡               | 1.07 <i>s</i> ‡                      |
| 3H-30 | 0.96 <i>s</i> ‡              | 0.96 <i>s</i> ‡              | 0.94 <i>s</i> ‡               | 0.92 <i>s</i> ‡               | 1.16 <i>s</i> ‡                      |
| OAc   | 2.06 <i>s</i>                | 2.03 <i>s</i>                | 2.06 <i>s</i>                 | 2.02 <i>s</i>                 | 2.07 <i>s</i>                        |

\* Values in parentheses are coupling constants in Hz.

† Overlapped with other signals.

‡ Signals were tentatively assigned.

Ganodermic acids T-N (5) and T-O (6), which upon acetylation both gave 2, were also positional isomers. The attachment of an acetoxy substituent in 5 was deduced from the mass spectral data. Compound 5 gave a proton signal at  $\delta$  3.23 (*dd*) which changed to 4.48 (*dd*) in 6 and both showed strong coupling with their C-2 protons. This suggested that their C-3 substituents were both in the  $\beta$ -configuration, with a hydroxy group in 5 and an acetoxy group in 6. The close similarity of the  $^{13}\text{C}$  NMR spectra between 5 and 3, except for a characteristic downfield chemical shift pattern of 5 in the A-ring and particularly at C-3, also revealed that the hydroxy group of 5 was at the C-3 $\beta$  position (Table 2). Compound 5 was therefore delineated as 3 $\beta$ -hydroxy-15 $\alpha$ -acetoxy-lanosta-7,9(11),24-trien-26-oic acid (ganodermic acid T-N) (prefixed with a T for Taipei) (mp 145–146°). Comparison of spectral data of 6 with those of 3, 4 and 5 makes its structure become obvious. Compound 6 is concluded to be the epimer of 4 at C-3 and positional isomer of 5 at C-3/C-15. Chemical transformation and spectral analysis lead us to the structure of 6 as 3 $\beta$ -acetoxy-15 $\alpha$ -hydroxy-lanosta-7,9(11),24-trien-26-oic acid (ganodermic acid T-O) (mp 160–162°).

Compound 7 is a minor component. It showed a prominent molecular ion peak at  $m/z$  510 (100,  $\text{C}_{32}\text{H}_{46}\text{O}_5$ ) and two fragment ions at  $m/z$  450 [ $\text{M} - \text{MeCO}_2\text{H}]^+$  and 255 (D-ring cleavage-Me).  $^1\text{H}$ NMR spectral data showed a proton signal at  $\delta$  2.75 (*ddd*) for H-1 $\beta$  and a distinct  $^{13}\text{C}$  signal at  $\delta$  216.59 for a carbonyl, which are known to be characteristic of the 3-oxo-lanostanoid triterpenes [7, 8]. Oxidation of 5 with Jones reagent to yield 7 confirmed that 7 was 3-oxo-15 $\alpha$ -acetoxy-lanosta-7,9(11),24-trien-26-oic acid (ganodermic acid T-

Q). The natural occurrence of oxygenated triterpenoid metabolites in *G. lucidum* as stereo- and positional isomers appears very interesting from the biosynthetic point of view.

In the course of our research on hypocholesterolemic constituents of *G. lucidum* we found that several triterpene isolates including compounds 4 and 6 exhibited an inhibitory activity on cholesterol synthesis.

## EXPERIMENTAL

The extraction and fractionation of the mycelia of *G. lucidum* have been described [5]. Pooled EtOAc fractions were chromatographed on a silica gel column (45  $\times$  2.5 cm) by stepwise elution with increasing percentage of MeOH in  $\text{CHCl}_3$ . Fractions containing compounds 3-7 were combined and chromatographed by reversed phase high performance TLC (E. Merck HPTLC RP-18,  $F_{254}$ ; 0.25 mm thickness; 10  $\times$  10 cm; MeCN-HOAc, 100:0.1). Eluting the band at  $R_f$  0.28 with MeOH yielded resinous compound 7 (2.0 mg). Eluting the band at  $R_f$  0.23 with the same solvent gave a mixture of 3 and 4 and eluting the band at  $R_f$  0.20 afforded a mixture of 5 and 6. Complete separation of 3 and 4 was achieved by normal phase TLC (Merck Kieselgel 60  $F_{254}$ ; 0.25 mm thickness) using *n*-hexane-Et<sub>2</sub>O-EtOAc-HOAc (400:200:200:1, developed  $\times$  3). After elution the bands at  $R_f$  0.24 and 0.19 separately with 5% MeOH in  $\text{CHCl}_3$  compounds 3 (4.7 mg) and 4 (10.3 mg) were obtained, respectively. Resolution of 5 and 6 was achieved by normal phase TLC using  $\text{CHCl}_3$ -Et<sub>2</sub>O-HOAc (380:20:1, developed three times). The bands at  $R_f$  0.23 and 0.17 were eluted separately with 5% MeOH in  $\text{CHCl}_3$  to afford compounds 5 (14.4 mg) and 6 (24.7 mg), respectively.

Table 2.  $^{13}\text{C}$ NMR spectral data of compounds 3–7 (50.3 or 100.6 MHz,  $\text{CDCl}_3$ )

| C    | 3               | 4*              | 5*              | 6*              | 7               |
|------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 1    | 29.78 <i>t</i>  | 30.53 <i>t</i>  | 35.61 <i>t</i>  | 35.28 <i>t</i>  | 36.60 <i>t</i>  |
| 2    | 25.44 <i>t</i>  | 23.04 <i>t</i>  | 27.62 <i>t</i>  | 24.09 <i>t</i>  | 37.48 <i>t</i>  |
| 3    | 75.97 <i>d</i>  | 78.00 <i>d</i>  | 78.80 <i>d</i>  | 80.66 <i>d</i>  | 216.59 <i>s</i> |
| 4    | 37.20 <i>s</i>  | 36.41 <i>s</i>  | 38.54 <i>s</i>  | 37.43 <i>s</i>  | 47.42 <i>s</i>  |
| 5    | 42.81 <i>d</i>  | 43.93 <i>d</i>  | 48.74 <i>d</i>  | 48.94 <i>d</i>  | 50.39 <i>d</i>  |
| 6    | 22.85 <i>t</i>  | 22.69 <i>t</i>  | 22.88 <i>t</i>  | 22.63 <i>t</i>  | 23.63 <i>t</i>  |
| 7    | 121.17 <i>d</i> | 121.10 <i>d</i> | 121.28 <i>d</i> | 121.02 <i>d</i> | 121.04 <i>d</i> |
| 8    | 140.08 <i>s</i> | 140.66 <i>s</i> | 140.04 <i>s</i> | 140.64 <i>s</i> | 140.37 <i>s</i> |
| 9    | 145.86 <i>s</i> | 145.98 <i>s</i> | 145.83 <i>s</i> | 145.73 <i>s</i> | 145.00 <i>s</i> |
| 10   | 37.23 <i>s</i>  | 37.21 <i>s</i>  | 37.33 <i>s</i>  | 37.15 <i>s</i>  | 37.25 <i>s</i>  |
| 11   | 115.45 <i>d</i> | 115.52 <i>d</i> | 115.76 <i>d</i> | 116.01 <i>d</i> | 116.92 <i>d</i> |
| 12   | 37.85 <i>t</i>  | 38.34 <i>t</i>  | 37.89 <i>t</i>  | 38.34 <i>t</i>  | 37.99 <i>t</i>  |
| 13   | 43.99 <i>s</i>  | 44.33 <i>s</i>  | 43.99 <i>s</i>  | 44.21 <i>s</i>  | 44.06 <i>s</i>  |
| 14   | 51.29 <i>s</i>  | 51.95 <i>s</i>  | 51.19 <i>s</i>  | 51.83 <i>s</i>  | 51.31 <i>s</i>  |
| 15   | 77.29 <i>d</i>  | 74.57 <i>d</i>  | 77.25 <i>d</i>  | 74.48 <i>d</i>  | 77.23 <i>d</i>  |
| 16   | 36.91 <i>t</i>  | 39.89 <i>t</i>  | 36.89 <i>t</i>  | 39.77 <i>t</i>  | 36.97 <i>t</i>  |
| 17   | 48.74 <i>d</i>  | 48.71 <i>d</i>  | 48.74 <i>d</i>  | 48.67 <i>d</i>  | 48.85 <i>d</i>  |
| 18   | 15.85 <i>q</i>  | 15.84 <i>q</i>  | 15.85 <i>q</i>  | 15.82 <i>q</i>  | 16.00 <i>q</i>  |
| 19   | 22.66 <i>q</i>  | 22.56 <i>q</i>  | 22.71 <i>q</i>  | 22.74 <i>q</i>  | 22.44 <i>q</i>  |
| 20   | 35.85 <i>d</i>  | 35.81 <i>d</i>  | 35.84 <i>d</i>  | 35.76 <i>d</i>  | 35.92 <i>d</i>  |
| 21   | 18.06 <i>q</i>  | 18.17 <i>q</i>  | 18.09 <i>q</i>  | 18.12 <i>q</i>  | 18.16 <i>q</i>  |
| 22   | 34.55 <i>t</i>  | 34.62 <i>t</i>  | 34.54 <i>t</i>  | 34.67 <i>t</i>  | 34.62 <i>t</i>  |
| 23   | 25.83 <i>t</i>  | 25.75 <i>t</i>  | 25.83 <i>t</i>  | 25.70 <i>t</i>  | 25.92 <i>t</i>  |
| 24   | 145.00 <i>d</i> | 145.13 <i>d</i> | 144.94 <i>d</i> | 145.01 <i>d</i> | 144.53 <i>d</i> |
| 25   | 126.64 <i>s</i> | 126.77 <i>s</i> | 126.74 <i>s</i> | 126.81 <i>s</i> | 126.76 <i>s</i> |
| 26   | 172.52 <i>s</i> | 172.86 <i>s</i> | 172.86 <i>s</i> | 172.93 <i>s</i> | 172.10 <i>s</i> |
| 27   | 11.88 <i>q</i>  | 11.89 <i>q</i>  | 11.89 <i>q</i>  | 11.86 <i>q</i>  | 12.04 <i>q</i>  |
| 28   | 18.39 <i>q</i>  | 17.13 <i>q</i>  | 18.27 <i>q</i>  | 16.99 <i>q</i>  | 18.24 <i>q</i>  |
| 29   | 28.07 <i>q</i>  | 27.66 <i>q</i>  | 28.06 <i>q</i>  | 27.95 <i>q</i>  | 25.40 <i>q</i>  |
| 30   | 22.55 <i>q</i>  | 22.35 <i>q</i>  | 15.70 <i>q</i>  | 16.81 <i>q</i>  | 22.14 <i>q</i>  |
| AcCO | 171.12 <i>s</i> | 170.75 <i>s</i> | 171.07 <i>s</i> | 170.90 <i>s</i> | 171.21 <i>s</i> |
| AcMe | 21.31 <i>q</i>  | 21.19 <i>q</i>  | 21.30 <i>q</i>  | 21.16 <i>q</i>  | 21.40 <i>q</i>  |

\*Spectra were obtained at 50.3 MHz.

Acknowledgements—Support of this work by the National Science Council and Veterans General Hospital, ROC to M.-S. Shiao is gratefully acknowledged.

## REFERENCES

1. Toth, J. O., Luu, B. and Ourisson G. (1983) *J. Chem. Res. (M)*, 2722.
2. Kohda, H., Tokumoto, W., Sakamoto, K., Fujii, M., Hirai, Y., Yamasaki, K., Komoda, Y., Nakamura, H., Ishihara, S. and Uchida, M. (1985) *Chem. Pharm. Bull.* **33**, 1367.
3. Morigiwa, A., Kitabatake, K., Fujimoto, Y. and Ikekawa, N. (1986) *Chem. Pharm. Bull.* **34**, 3025.
4. Hirotani, M., Ino, C., Furuya, T. and Shiro, M. (1986) *Chem. Pharm. Bull.* **34**, 2282.
5. Shiao, M.-S., Lin, L.-J., Yeh, S.-F. and Chou, C.-S. (1987) *J. Nat. Prod.* **50**, 886.
6. Nishitoba, T., Sato, H., Shirasu, S. and Sakamura, S. (1987) *Agric. Biol. Chem.* **51**, 619.
7. Kubota, T., Asaka, Y., Miura, I. and Mori, H. (1982) *Helv. Chim. Acta* **65**, 611.
8. Hirotani, M., Furuya, T. and Shiro, M. (1985) *Phytochemistry* **24**, 2055.